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The purpose of this article is to investigate the process of the influence of a nonstationary load on an arbitrary region 
of an elastic anisotropic cylindrical shell. The approach to the study of the propagation of forced transient oscillations 
in the shell is based on the method of the influence function, which represents normal displacements in response to 
the action of a single load concentrated along the coordinates. For the mathematical description of the instantaneous 
concentrated load, the Dirac delta functions are used. To construct the influence function, expansions in exponen-
tial Fourier series and integral Laplace and Fourier transforms are applied to the original differential equations. The 
original integral Laplace transform is found analytically, and for the inverse integral Fourier transform, a numerical 
method for integrating rapidly oscillating functions is used. The convergence of the result in the Chebyshev norm is 
estimated. The practical significance of the work is that the obtained results can be used by scientists or students to 
solve new problems of dynamics of cylindrical shells on an elastic basis under pulse loads. The found non-stationary 
influence function opens up possibilities for studying the stress-strain state, solving nonstationary inverse and contact 
problems for anisotropic shells, studying nonstationary dynamics in the case of nonzero initial conditions, and also 
when constructing integral equations of the boundary element method.
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INTRODUCTION

In many areas of technology, for example, in rocket and 
missile engineering, aircraft industry, mechanical engi-
neering and construction, such structural element as 
shells is widely used. The continuous increase in the 
level and dynamics of improvement and development of 
new promising designs entails the imposition of higher 
requirements for knowledge of vibration propagation pat-
terns in shells. A special place is occupied by the anal-
ysis of the propagation of non-stationary oscillations, 
due to the fact that in such problems the variability of 
the required solution is substantially inhomogeneous in 
time and coordinates. The stress-strain behaviour of cy-
lindrical shells under the influence of shock loads simu-
lated by impulse functions is of theoretical and applied 
interest.
Problems devoted to the study of the unsteady dynam-
ics of isotropic elastic Kirchhoff-Love plates have been 
studied most fully in the book by A.G. Gorshkov, A.L. 
Medvedsky, L.N. Rabinsky, and D.V. Tarlakovsky [1]. In 
the works of A.E. Bogdanovich [2, 3], the author studied 
a wide range of problems in the dynamics of orthotropic 
cylindrical shells, their axisymmetric and non-axisym-
metric deformation during longitudinal impact. In addi-
tion, non-axisymmetric deformation at unsteady external 
pressure was considered. Much attention is paid to the 
derivation and analysis of nonlinear equations of motion 
for orthotropic shells, the study of the applicability of the 
Kirchhoff-Love model in problems of dynamics. Methods 

for solving geometrically nonlinear problems of the dy-
namics of imperfect cylindrical shells are presented. On 
their basis, formulation and development of methods for 
analysing the strength of cylindrical shells made of lami-
nated composites under dynamic compressive loads.
The work of T.B. Koshkina [4] is devoted to the problem 
of deformation of reinforced cylindrical shells under the 
action of dynamic compressive loads. The paper consid-
ers the basic equations of the nonlinear theory of lami-
nated orthotropic cylindrical shells, supported by stiffen-
ers, and solved non-axisymmetric problems of dynamic 
buckling of imperfect orthotropic cylindrical shells with 
stiffening ring using the Bubnov-Galerkin method based 
on numerous approximations of displacements. Methods 
were developed for solving non-axisymmetric problems 
of deformation of orthotropic cylindrical shells, reinforced 
by annular or longitudinal enforcement ribs.
Issues of the influence of longitudinal-radial vibrations on 
a viscoelastic cylindrical shell were reflected in [5]. Ap-
proximate equations of longitudinal vibrations of a cylin-
drical shell were formulated and their area of application 
was determined. The approach to the study was based 
on the consideration of a cylinder as a three-dimensional 
deformable body, solving three-dimensional equations of 
the dynamics of this body by applying the integral Fourier 
and Laplace transforms, constructing general solutions 
of boundary value problems in transformations, expand-
ing the stress-strain state of a body in terms of the de-
gree of the radial coordinate, determining the required 
functions from three-dimensional boundary conditions 
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for given external unsteady forces and stresses.
The papers [6-8] reflect the application of the method of 
influence functions in solving non-stationary problems of 
the theory of elasticity and the theory of shells. Non-sta-
tionary contact problems for thin cylindrical, spherical 
shells and elastic half-space are investigated [9, 10]. 
The direct and inverse problems for a Timoshenko-type 
beam of finite length under the action of an unsteady 
load, issues related to the identification of defects in an 
elastic rod are considered in [11-13]. The case of tran-
sient action of a rigid indenter on an elastic half-plane 
is considered [14, 15]. In papers [16-18] the issues of 
unsteady dynamics and the peculiarities of constructing 
the influence function for anisotropic plates and shells 
are considered. The approach to the solution is based 
on the method of Green’s functions and the principle of 
superposition, according to which the required solution 
is related to the load by means of an integral operator of 
convolution type in spatial variables and in time [19-21]. 
The core of this operator is the influence function for the 
plate, which represents the normal displacements in re-
sponse to the action of a single coordinate and time-con-
centrated load. Dirac delta functions are used for the 
mathematical description of this load. Integral Laplace 
and Fourier transforms are used to construct the influ-
ence function.
The problems of unsteady dynamics of elastic aniso-
tropic shells are insufficiently studied at the moment. 
In the present paper, the process of the influence of a 
nonstationary load on an arbitrary region of an elastic 
anisotropic cylindrical shell is analytically investigated. 
For the first time, presumably, a non-stationary influence 
function for an anisotropic shell was constructed, which 
opens up the possibility of extensive applied and scien-
tific research. Its application is possible in the study of 
the stress-strain state, the solution of unsteady inverse 
and contact problems for anisotropic shells, as well as 
the study of unsteady dynamics in the case of nonzero 
initial conditions.

MATERIALS AND METHODS

An unbounded thin elastic anisotropic cylindrical Kirch-
hoff-Love shell of constant thickness h, radius R and ma-
terial density ρ is considered (Fig. 1). The authors con-
sider the anisotropy of the material such that the elastic 
medium has one surface of symmetry. In this case, this 
surface is the middle surface of the shell. In this case, 
the material under consideration is characterised by six 
independent elastic constants [22]: C1111=c12; C1122=c12; 
C1112=c16; C

2222=c22; C
1222=c26; C

1212=c66. 
The problem is solved in the cylindrical coordinate sys-
tem ORαz associated with the z-axis of the cylindrical 
shell. At the initial moment of time, the shell is acted upon 
by an unsteady normal pressure P(α, z, ), distributed 
over an arbitrary region D belonging to the lateral surface 
of the shell [23-25]. 

Figure 1: Cylindrical shell under unsteady pressure

The statement of the problem includes the equations 
of motion of the Kirchhoff-Love elastic shell, the corre-
sponding geometric and physical relations, taking into 
account the properties of the anisotropy of the material 
of the shell under study [26, 27]. The displacement equa-
tions of motion and differential operators have the form 
(Eqs. 1-12): 

(1)

(6)

(5)

(4)

(3)

(2)

(9)

(8)

(7)

(12)

(11)

(10)
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Here, all variables are dimensionless and the following 
designations are adopted for them (accents indicate di-
mensional quantities) (Eqs. 13-28): 

(18)

(17)

(16)

(15)

(14)

(13)

(20)

(19)

(28)

(27)

(26)

(25)

(24)

(23)
(22)

(21)

where ui' – components of the vector of tangential dis-
placements, w' – normal displacement, c* – characteris-
tic speed,  – dimensionless time, t – dimensional time,   
k – coefficient of the ratio of the shell radius to its thick-
ness, qi – tangential pressure, P' – normal pressure,  
L – characteristic dimension.
Equations (1-12) together with the initial conditions (Eqs. 
29-34) form the initial problem: 

(31)

(30)

(29)

(34)

(33)

(32)

RESULTS AND DISCUSSION

Let us denote by Gw(α,z, ) the influence function for 
normal displacement, and by GUa(α,z, ) and GUz(α,z, )  
the influence functions for tangential displacements. 
Tangential pressures qi in (Eqs. 1-3) are assumed to be 
zero. The influence functions Gw(α,z, ), GUa(α,z, ) and 
GUz(α,z, ) – are the solution to the following problem 
(Eqs. 35-38): 

(36)

(35)

(38)

(37)

where δ(*)  – the Dirac delta function, and the differential 
operators Kij (Gk) have the form (4-12), where it is neces-
sary to replace the corresponding required functions with 
the influence functions.
To solve this initial problem, we apply to (35-38) expan-
sions in exponential Fourier series in angle α, as well as 
integral Fourier transforms in the z coordinate and La-
place in time . We represent the influence functions and 
normal pressure in the form of exponential Fourier series 
(Eqs. 39-43): 

(43)

(42)

(41)

(40)

(39)
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Applying to (35-38) the Laplace integral transform in time  and Fourier transform in the z coordinate, taking into 
account the properties of integral transformations of the delta function [1], we obtain a system of algebraic equations 
for the transform images , of influence functions in the space of the Fourier and Laplace transforms in 
the coefficients of the series (Eqs. 44-46): 

where (Eqs. 47-52): 

(44)

(49)

(48)

(47)

(46)

(45)

(52)

(51)

(50)

Hereinafter, the superscript "L" of the function represents Laplace transform, and "F" is its Fourier transform, s is the 
Laplace transform parameter, q is the Fourier transform parameter, n is the coefficient of the series. Solving system 
(44-46), we obtain images of the influence function       . The transform image for the influence function        
will have the form (Eq. 53): 

(53)

where (Eqs. 54-58):

(58)

(57)

(56)

(55)

(54)

Let us find the original of the influence function (53). First, we perform the inverse integral Laplace transform. To do 
this, we split expression (53) into terms by the method of undefined coefficients (Eq. 59): 

(59)
where (Eqs. 60-62): 

(61)

(60)

Natalia A. Lokteva, et al. - Non-stationary influence function for an 
unbounded anisotropic kirchhoff-love shell



Istraživanja i projektovanja za privredu ISSN 1451-4117 
Journal of Applied Engineering Science  Vol. 18, No. 4, 2020

741

(62)

and  si – roots of (Eqs. 53, 63-66): 

(66)

(65)

(64)

(63)

We use tables [1] and perform the inverse integral Laplace transform of the relation (59) (Eq. 67): 

(67)

The Fourier original of the influence function (67) is determined by the well-known inversion formula [1] (Eq. 68): 

Let us take some large value A and replace improper integral (68) by the definite integral (Eq. 69): 

To calculate integral (69), we use the numerical method of integrating rapidly oscillating functions [21]. Then the orig-
inal of the influence function in the coefficients of the series will take the form (Eq. 70): 

where (Eqs. 71-76): 

Taking into account relations (39-43, 59), and (70), the nonstationary influence function for the normal deflection of 
an anisotropic unbounded cylindrical Kirchhoff-Love shell takes the form (Eq. 77): 

(76)
(75)

(74)

(73)

(72)

(71)

(70)

(69)

(68)

(77)

Figure 2 shows the graphs of the influence functions Gw1(0,z,1) and Gw2(0,z,1) depending on the z coordinate at the 
integration step Δ=0.16 and retention of 10 members of the row. The solid line corresponds to the influence function 
Gw1(0,z,1) at A=10, and the points correspond to the influence function Gw2(0,z,1) at A=102. The influence function 
is plotted with the following dimensionless coefficients characterising the anisotropic material and shell dimensions: 
C1=0.814; C2=-0.735; C3=0.717; C4=-0.630; C5=0.574; k=25. Line – Gw1(0,z,1), A=10; Points – Gw2(0,z,1), A=102. 
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Figure 2: Estimating the convergence of the result

The convergence estimate is performed according to the Chebyshev norm in the space C0[0.20] (Eq. 78): 

(78)
Figures 3 and 4 show the spatial distributions of the influence function at times =1 and =4 at A=10, n=10. 

Figure 3: Spatial distributions of the influence function

Figure 4: Spatial distribution of the influence function in "expanded" form

Results presented in Fig. 3 and Fig. 4 clearly show the 
effect of material anisotropy on the displacement distri-
bution. The obtained solution demonstrates the asym-
metric dynamics of oscillations propagation.

CONCLUSIONS

The process of the impact of a forced non-stationary load 
on a thin unbounded cylindrical shell of constant thick-
ness is considered. The theory of Kirchhoff-Love plates 
was accepted as the theory of thin elastic shells. The 

a) =1 b) =4

a) =1 b) =4
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material of the cylindrical shell is assumed to be elas-
tic and anisotropic. In this case, the case of anisotropy 
was considered, in which the elastic medium has one 
plane of symmetry. In this case, this plane was the mid-
dle surface of the shell. For a thin Kirchhoff-Love shell, 
the material under consideration is characterised by six 
independent elastic constants. The formulation of the 
problem included the equations of motion of the Kirch-
hoff-Love elastic shell, the corresponding geometric and 
physical relations, taking into account the properties of 
the anisotropy of the shell material under study.
As a result of applying this approach, a non-stationary 
influence function was found for an anisotropic elastic 
thin unbounded cylindrical Kirchhoff-Love shell. To find 
the influence function, the expansion into exponential 
Fourier series in the angular coordinate, as well as di-
rect and inverse integral Laplace transformation in time 
and Fourier transformation in the axial coordinate were 
applied to the original differential equations. The use of 
the method of undetermined coefficients made it possi-
ble to analytically perform the inverse Laplace transfor-
mation. The original integral Fourier transform was found 
by a numerical method for integrating rapidly oscillating 
functions. The convergence of the result in terms of the 
Chebyshev norm is estimated when choosing parame-
ters at the stage of transition to a numerical method for 
integrating rapidly oscillating functions.
The presented results demonstrated the influence of ma-
terial anisotropy on the distribution of normal displace-
ments – asymmetric dynamics of vibration propagation, 
which made it possible to assess the adequacy of the 
found non-stationary influence function. Further re-
search is to investigate the normal deflection of a cylin-
drical shell in response to the action of a non-stationary 
load, concentrated or distributed over an arbitrary region 
and depending arbitrarily on time.
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